已知公差不为零的等差数列满足,且成等比数列。(1)求数列的通项公式;(2)设为数列的前n项和,求数列的前n项和
(本题满分14分) 已知函数其中 (1)当时,求曲线处的切线的斜率; (2)当时,求函数的单调区间与极值。
(本题满分13分)如图,P-ABCD是正四棱锥,ABCD-A1B1C1D1是正方体,其中AB=2,PA=. (1)求证:PA⊥B1D1; (2)求平面PAD与平面BDD1B1所成锐二面角的余弦值.
(本题满分13分)某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为.当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
(本题满分13分) 已知圆C:x2+y2+2x-4y+3=0. (1)若不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程; (2)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的轨迹方程.
(本题满分13分) 在△ABC中,A,B,C分别是三边a,b,c的对角.设=(cos,sin),=(cos,-sin),,的夹角为. (1)求C的大小;(2)已知c=,三角形的面积S = ,求a +b的值.