设集合W是满足下列两个条件的无穷数列{an}的集合:① ②,其中n∈N*,M是与n无关的常数(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系;(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值;(3)在(2)的条件下,设,求证:数列{Cn}中任意不同的三项都不能成为等比数列.
(本小题满分14分) 设是椭圆上的两点,点是线段的中点,线段的垂直平分线与椭圆交于两点. (Ⅰ)当时,过点P(0,1)且倾斜角为的直线与椭圆相交于E、F两点,求长; (Ⅱ)确定的取值范围,并求直线CD的方程.
(本小题满分12分) 已知抛物线C的顶点在原点,焦点在x轴上,且抛物线上有一点(4,)到焦点的距离为5. (Ⅰ)求抛物线C的方程; (Ⅱ)若抛物线C与直线相交于不同的两点A、B,求证:.
(本小题满分12分) 在锐角中,内角对边的边长分别是,且, (Ⅰ)求角; (Ⅱ)若边, 的面积等于, 求边长和.
(本小题满分12分) 设数列为等差数列,前项和为,已知,, (Ⅰ)求的通项公式; (Ⅱ)若,求数列的前项和.
(本小题满分12分) 已知命题:关于的不等式的解集为空集;命题:函数为增函数,若命题为假命题,为真命题,求实数的取值范围.