设集合W是满足下列两个条件的无穷数列{an}的集合:① ②,其中n∈N*,M是与n无关的常数(1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系;(2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值;(3)在(2)的条件下,设,求证:数列{Cn}中任意不同的三项都不能成为等比数列.
设分别是椭圆的左、右焦点,过的直线与椭圆相交于A,B两点,直线的倾斜角为,到直线的距离为.(1)求椭圆的焦距;(2)如果,求椭圆的方程.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.从袋中随机取两个球,求取出的球的编号之和不大于4的概率;先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率.
设分别是椭圆的左、右焦点,过的直线与椭圆交于A、B两点,且,,成等差数列.(1)求;(2)若直线的斜率为1,椭圆方程.
设,为实数,首项为,公差为的等差数列的前n项和为,满足.(1)若,求及;(2)求的取值范围.
已知下列两个命题:P:对任意的实数x都有恒成立;q:关于x的方程有实根.若p且q为假,p或q为真,求的取值范围.