设分别是椭圆的左、右焦点,过的直线与椭圆交于A、B两点,且,,成等差数列.(1)求;(2)若直线的斜率为1,椭圆方程.
在中,内角所对的边分别为已知, (Ⅰ)求角的取值范围; (Ⅱ)若的面积,为钝角,求角的大小.
已知函数,(为常数且). (1)若,求不等式的解集; (2)若函数在上有两个零点,求的取值范围.
如图,已知抛物线,点是x轴上的一点,经过点且斜率为1的直线与抛物线相交于两点. (1)求证线段的中点在一条定直线上,并求出该直线方程; (2)若(O为坐标原点),求的值.
如图,在四棱锥中,底面是菱形,,⊥平面,,点分别为和中点. (1)求证:直线平面; (2)求与平面所成角的正弦值.
已知公差不为0的等差数列的前项和为,且成等比数列。 (1)求数列的通项公式; (2)设,数列的最小项是第几项,并求出该项的值.