已知数列{an}为等差数列,它的前n项和为Sn,且a3=5,S6=36 .(1)求数列{an}的通项公式;(2)数列{bn}满足bn=(-3)n·an,求数列{bn}的前n项和Tn.
如图所示,在中,,,,求的值.
假定下述数据是甲、乙两个供货商的交货天数:甲:10 9 10 10 11 11 9 11 10 10乙:8 10 14 7 10 11 10 8 15 12估计两个供货商的交货情况,并问哪个供货商交货时间短一些,哪个供货商交货时间较具一致性与可靠性.
已知A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(wx+j)(w>0,<j<0)图象上的任意两点,且角j的终边经过点P(l,-),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为. (1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当x∈时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.
设有关于x的一元二次方程x2+2ax+b2="0." (l)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求方程有实根的概率;(2)若a是从区间[0,t+1]任取的一个数,b是从区间[0,t]任取的一个数,其中t满足2≤t≤3,求方程有实根的概率,并求出其概率的最大值.
函数f(x)=Asin(wx+j)(A>0,w>0,-<j<,x∈R)的部分图象如图所示:,(1)求函数y=f(x)的解析式;(2)当x∈时,求f(x)的取值范围.