(本小题满分12分)椭圆C:的两个焦点为,点P在椭圆C上,且,.(1)求椭圆C的方程;(2)若直线过圆的圆心M,交椭圆C于A、B两点,且A、B两点关于点M对称,求直线的方程。
在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数) (1)写出直线l和曲线C的普通方程; (2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC (1)求证:BE=2AD; (2)当AC=3,EC=6时,求AD的长.
已知函数函数在处取得极值1. (1)求实数b,c的值; (2)求在区间[-2,2]上的最大值.
已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线 (1)求曲线C的方程, (2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
如图,四棱锥中,底面为平行四边形,底面 (1)证明:平面平面; (2)若二面角大小为,求与平面所成角的正弦值.