已知点P在圆x2+y2=1上运动,过点P作x轴的垂线,垂足为D,点M在DP的延长线上,且有|DP|=|MP|.(1)求M点的轨迹方程C;(2)已知直线l过点(0,),且斜率为1,求l与C相交所得的弦长.
如图,设是单位圆和轴正半轴的交点,是单位圆上 的两点,是坐标原点,,. (1)若,求的值; (2)设函数,求的值域.
22.已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5. (Ⅰ)求抛物线C的方程; (Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
(Ⅲ)过A、B分别作抛物C的切线且交于点M,求与面积之和的最小值.
已知函数 (Ⅰ)当时,求函数的单调区间; (Ⅱ)若在是单调函数,求实数的取值范围.
如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4. (Ⅰ)若F为DE的中点,求证:BE//平面ACF; (Ⅱ)求直线BE与平面ABCD所成角的正弦值.
设向量,函数(其中).且的图像在y轴右侧的第一个最高点的横坐标是 (Ⅰ)求的值和单调增区间; (Ⅱ)如果在区间上的最小值为,求m的值