在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.(1)求二面角D1-AE-C的大小;(2)求证:直线BF∥平面AD1E.
如图,是抛物线的焦点,为准线与轴的交点,直线经过点. (Ⅰ)直线与抛物线有唯一公共点,求的方程;
(Ⅱ)直线与抛物线交于、两点记、的斜率分别为,.
函数.(Ⅰ)当时,求的最小值; (Ⅱ)当时,求的单调区间.
已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折起,使DB=,如图,O,H分别为AE、AB中点.(Ⅰ)求证:直线OH//面BDE; (Ⅱ)求证:面ADE面ABCE; (Ⅲ)求二面角O-DH-E的余弦值.
某次有奖竞猜活动设有、两组相互独立的问题,答对问题可赢得奖金3000元,答对问题可赢得奖金6000元.规定答题顺序可任选,但只有一个问题答对后才能解答下一个问题,否则中止答题,假设你答对问题、的概率依次为.(Ⅰ)若你按先后的次序答题,写出你获得奖金的数额的分布列及期望;(Ⅱ)你认为获得奖金期望的大小与答题顺序有关吗?证明你的结论.
已知函数的图像关于直线对称,当,且,求的值.