(本题10分)袋中有红、白两种颜色的小球共7个,它们除颜色外完全相同,从中任取2个,都是白色小球的概率为,甲、乙两人不放回地从袋中轮流摸取一个小球,甲先取,乙后取,然后再甲取……,直到两人中有一人取到白球时游戏停止,用X表示游戏停止时两人共取小球的个数。(1)求;(2)求。
设a=(cos,sin),b=(cos,sin),且a与b具有关系|ka+b|=|a-kb|(k>0).(1)用k表示a·b;(2)求a·b的最小值,并求此时a与b的夹角.
向量a=(cos23°,cos67°),向量b=(cos68°,cos22°).(1)求a·b;(2)若向量b与向量m共线,u=a+m,求u的模的最小值.
已知a=(cos,sin),b=(cos,sin)(0<<<).(1)求证:a+b与a-b互相垂直;(2)若ka+b与a-kb的模相等,求-.(其中k为非零实数)
A(2,3),B(5,4),C(7,10),=+.当为何值时,(1)点P在第一、三象限的角平分线上;(2)点P到两坐标轴的距离相等?
在ABCD中,A(1,1),=(6,0),点M是线段AB的中点,线段CM与BD交于点P.(1)若=(3,5),求点C的坐标;(2)当||=||时,求点P的轨迹.