(本题10分)袋中有红、白两种颜色的小球共7个,它们除颜色外完全相同,从中任取2个,都是白色小球的概率为,甲、乙两人不放回地从袋中轮流摸取一个小球,甲先取,乙后取,然后再甲取……,直到两人中有一人取到白球时游戏停止,用X表示游戏停止时两人共取小球的个数。(1)求;(2)求。
求值
已知全集,集合,, (1)求;; (2)若集合是集合A的子集,求实数k的取值范围.
已知函数,其中. (1)求的单调区间; (2)当时,斜率为的直线与函数的图象交于两点,其中,证明:. (3)是否存在,使得对任意恒成立?若存在,请求出的最大值;若不存在,请说明理由.在正数,使得成立?请说明理由.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点且不垂直于x轴直线与椭圆C相交于A、B两点. (1)求椭圆C的方程; (2)求的取值范围; (3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
已知函数的图象在点处的切线方程为. (1)用表示; (2)若函数在上的最大值为2,求实数a的取值范围.