(Ⅰ)已知:,,求的值;(Ⅱ)类比(Ⅰ)的过程与方法,将(Ⅰ)中已知条件中两个等式的左边进行适当改变,写出改变后的式子,并求的值.
如图,正方形所在的平面与正方形所在的平面相垂直,、分别是、的中点.(1)求证:面面;(2)求直线与平面所成的角正弦值.
甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.
如图,在各棱长均为的三棱柱中,侧面底面,.(1)求侧棱与平面所成角的正弦值的大小;(2)已知点满足,在直线上是否存在点,使?若存在,请确定点的位置;若不存在,请说明理由.
节日期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段 后得到如下图的频率分布直方图. (1)此调查公司在采样中,用到的是什么抽样方法? (2)求这40辆小型车辆车速的众数和中位数的估计值. (3)若从车速在的车辆中任抽取2辆,求抽出的2辆车中车速在的车辆数的分布列及数学期望.
已知函数(,,)的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和(1)求函数的解析式;(2)若锐角满足,求的值.