已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.(1)求两直线与y轴交点A,B的坐标;(2)求点C的坐标;(3)求△ABC的面积.
如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.指针固定,转动转盘后任其自由停止,指针所指扇形得到相应位置上的数字(若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).若将转盘转动一次,求得到负数的概率;若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a、b.请你用列表法或树状图求a与 b都是方程的解的概率.
如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:以直线BC为对称轴作△ABC的轴对称图形,得到△,再将△绕着点B逆时针旋转90°,得到△,请依次画出△、△.求△旋转至△的过程中,线段所扫过的面积(计算结果用含有π的式子表示)
先化简,再求值:, 其中.
在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.求点B的坐标;已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
如图①,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1、S2,如果,那么称直线l为该图形的黄金分割线.研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图②所示,则直线CD是△ABC的黄金分割线.你认为对吗?为什么?请你说明:三角形的中线是否也是该三角形的黄金分割线?研究小组在进一步探究中发现:过点C任意作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF,如图③所示,则直线EF也是△ABC的黄金分割线.请你说明理由.如图④,点E是□ABCD的边AB上的黄金分割点,过点E作EF∥AD,交DC于点F,显然直线EF是□ABCD的黄金分割线,请你画一条□ABCD的黄金分割线,使它不经过□ABCD各边黄金分割点.