已知圆C:过点A(3,1),且过点P(4,4)的直线PF与圆C相切并和x轴的负半轴相交于点F.(1)求切线PF的方程; (2)若抛物线E的焦点为F,顶点在原点,求抛物线E的方程.(3)若Q为抛物线E上的一个动点,求的取值范围.
将一个各面上均涂有红色的正方体锯成27个同样大小的小正方体, (1)从这些小正方体中任取一个,求其中至少有两个面涂有红色的概率; (2)从中任取2个小正方体,记2个小正方体涂有红色的面数和为ξ,求ξ的分布列和数学期望.
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点且满足,M,S分别为PB,BC的中点 (1)证明:CM⊥SN; (2)求SN与平面CMN所成角的大小; (3)求三棱锥P-ABC外接球的体积V。
在△ABC中,边a,b,c分别对应角A、B、C,且 (1)求角B的值; (2)若求△ABC的面积
(本小题满分12分) 已知数列的前项和. (Ⅰ)求数列{}的通项公式; (Ⅱ)设,求数列{}的前项和.
(本小题满分10分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知学生小张只选甲的概率为,只选修甲和乙的概率是,至少选修一门的概率是,用表示小张选修的课程门数和没有选修的课程门数的乘积. (Ⅰ)求学生小张选修甲的概率; (Ⅱ)记“函数为上的偶函数”为事件,求事件的概率; (Ⅲ)求的分布列和数学期望;