中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2, 2),且(I )求椭圆E的方程;(II)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
函数是定义在上的奇函数,且, (1)确定函数的解析式; (2)判断在上的单调性并用定义证明. (3)解不等式<0;
已知函数. (1)求实数的范围,使在区间上是单调函数。 (2)求的最小值。
已知U=R,集合有实根},求,,。
(本小题满分10分) 已知圆与直线相切于点,且圆心在直线上. (Ⅰ)求圆的方程; (Ⅱ)设直线与圆相交于两点,是坐标原点.求的面积最大值,并求取得最大值时直线的方程.
(本小题满分10分) 设数列的前n项和,数列满足,(其中),求数列的前项和.