不等式选讲。已知均为正实数,且.求的最大值.
已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1)求椭圆的方程;(2)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.
抛掷三枚不同的具有正、反两面的金属制品,假定正面向上的概率为,正面向上的概率为,正面向上的概率为t(0<t<1),把这三枚金属制品各抛掷一次,设表示正面向上的枚数。(1)求的分布列及数学期望(用t表示);(2)令,求数列的前n项和.
如图, 是正方形, 平面,, .(Ⅰ) 求证:;(Ⅱ) 求面FBE和面DBE所形成的锐二面角的余弦值.
已知函数的最小正周期为.(I)求值及的单调递增区间;(II)在△中,分别是三个内角所对边,若,,,求的大小.
如图:已知方程为的椭圆,为顶点,过右焦点的弦的长度为,中心到弦的距离为,点从右顶点开始按逆时针方向在椭圆上移动到停止,当时,记,当,记,函数图像是 ( )