如图,在三棱柱ABC-A1BlC1中,CC1丄底面ABC,底面是边长为2的正三角形,M, N分别是棱CC1、AB的中点.(I)求证:CN//平面 AMB1;(II)若二面角A-MB1-C为45°,求CC1的长.
(本小题满分12分)某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产. ①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
(本小题满分12分)如图,已知⊙所在的平面,AB是⊙的直径,,是⊙上一点,且,分别为中点。(1)求证:平面;(2)求证:;(3)求三棱锥-的体积。
(本小题满分12分)已知函数f(x)=。(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并证明;(3)判断函数f(x)在定义域上的单调性,并用定义证明。
(本小题满分10分)已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R(1)求A∪B,( A)∩B;(2)若A∩C≠,求a的取值范围。
(本小题满分12分)已知椭圆C:(a>b>0)的右焦点为F(1,0),离心率为,P为左顶点。(1)求椭圆C的方程;(2)设过点F的直线交椭圆C于A,B两点,若△PAB的面积为,求直线AB的方程。