(本小题8分)数列为等比数列,(1)求其通项公式(2)数列有,求的前项和
((本小题满分12分) 一项"过关游戏"规则规定: 在第n 关要抛掷骰子n次, 若这n次抛掷所出现的点数之和大于+1 (n∈N*), 则算过关. (1)求在这项游戏中第三关过关的概率是多少? (2)若规定n≤3, 求某人的过关数ξ的期望.
(本小题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。 (1)求异面直线PA与BF所成角的正切值。 (2)求证:EF⊥平面PCD。
(本小题满分10分) 已知函数 (1)求函数的最小正周期T; (2)当时,求函数的最大值和最小值。
如图,直四棱柱中,底面是的菱形,,,点在棱上,点是棱的中点. (1)若是的中点,求证:; (2)求出的长度,使得为直二面角.
.若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,求: (1)点P在直线上的概率; (2)点P在圆外的概率.