已知顶点在原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程.
(本小题满分10分)选修4-5:不等式选讲 设函数,其中. (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为,求a的值.
(本题满分为12分) 已知函数的图像过坐标原点,且在点处的切线 的斜率是. (1)求实数的值;(2)求在区间上的最大值;
(本题满分为12分)已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为. (I)求椭圆方程; (II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料,若4杯都选对,则月工资定为3500元,若4杯选对3杯,则月工资定为2800元,否则月工资定为2100元,令X表示此人选对A饮料的杯数,假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列; (2)求此员工月工资的期望.
(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.