如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=,等边△ADB所在的平面以AB为轴可转动.(Ⅰ)当平面ADB⊥平面ABC时,求三棱锥的体积;(Ⅱ)当△ADB转动过程中,是否总有AB⊥CD?请证明你的结论
已知三棱锥P-ABC中,PA⊥ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.
已知{}是公差不为零的等差数列,=1,且,,成等比数列. (Ⅰ)求数列{}的通项;(Ⅱ)求数列{.}的前项和.
已知关于的不等式的解集是。 (1)求实数的值; (2)若正数满足:,求的最大值。
(本题满分14分) 已知 (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)若在处有极值,求的单调递增区间; (Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值; 若不存在,说明理由.
(本题满分13分) 已知椭圆()过点(0,2),离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆相交于两点,求.