如图,A、B、C、D是空间四点,在△ABC中,AB=2,AC=BC=,等边△ADB所在的平面以AB为轴可转动.(Ⅰ)当平面ADB⊥平面ABC时,求三棱锥的体积;(Ⅱ)当△ADB转动过程中,是否总有AB⊥CD?请证明你的结论
已知函数,. (1)当时,若上单调递减,求a的取值范围; (2)求满足下列条件的所有整数对:存在,使得的最大值,的最小值; (3)对满足(2)中的条件的整数对,试构造一个定义在且上的函数:使,且当时,.
(本小题满分16分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。 (I)设(单位:米),要使花坛AMPN的面积大于32平方米,求的取值范围; (II)若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。
设二次函数在区间上的最大值、最小值分别是M、m,集合. (1)若,且,求M和m的值; (2)若,且,记,求的最小值.
(本小题满分14分)已知:在函数的图象上,以为切点的切线的倾斜角为 (I)求的值; (II)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。
(本小题满分14分):已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域