(本小题满分14分)已知,函数.(1)若函数在区间内是减函数,求实数的取值范围;(2)求函数在区间上的最小值;(3)对(2)中的,若关于的方程有两个不相等的实数解,求实数的取值范围.
数列中,,前项的和是,且,. (1)求数列的通项公式; (2)记,求.
已知函数,,且的解集为. (Ⅰ)求的值; (Ⅱ)若,且,求证:
已知曲线的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是ρ=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为. (Ⅰ)求点A,B,C,D的直角坐标; (Ⅱ)设P为上任意一点,求的取值范围.
如图,、是圆的半径,且,是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.
已知(). (Ⅰ)当时,判断在定义域上的单调性; (Ⅱ)若在上的最小值为,求的值; (Ⅲ)若在上恒成立,试求的取值范围.