(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.
如图,过点的两直线与抛物线相切于A、B两点, AD、BC垂直于直线,垂足分别为D、C. (1)若,求矩形ABCD面积; (2)若,求矩形ABCD面积的最大值.
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=,且AB=2AD=2DC=2PD=4,E为PA的中点. (1)证明:DE∥平面PBC; (2)证明:DE⊥平面PAB.
求实数的取值组成的集合,使当时,“”为真,“”为假. 其中方程有两个不相等的负根;方程无实数根.
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”. (Ⅰ)判断函数是否为 “()型函数”,并说明理由; (Ⅱ)若函数是“()型函数”,求出满足条件的一组实数对;, (Ⅲ)已知函数是“()型函数”,对应的实数对为.当时,,若当时,都有,试求的取值范围.
已知函数为常数). (Ⅰ)求函数的定义域; (Ⅱ)若,,求函数的值域; (Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.