(本小题满分12分)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD=60,E是CD的中点,PA底面ABCD,PA=2.(1)证明:平面PBE平面PAB;(2)求平面PAD和平面PBE所成二面角的正弦值。
已知函数(Ⅰ)若,求的最大值和最小值;(Ⅱ)若,求的值.
已知函数。(Ⅰ)若在是增函数,求b的取值范围;(Ⅱ)若在时取得极值,且时,恒成立,求c的取值范围.
已知函数.(Ⅰ)当a = 3时,求不等式的解集;(Ⅱ)若对恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线过点P(-2,-4)的直线为参数)与曲线C相交于点M,N两点.(Ⅰ)求曲线C和直线的普通方程;(Ⅱ)若|PM|,|MN|,|PN |成等比数列,求实数a的值.
如图,已知切⊙于点E,割线PBA交⊙于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.求证:(Ⅰ); (Ⅱ).