已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为;③圆心到直线:的距离为的圆的方程。
(本小题满分14分)如图,椭圆和圆,已知椭圆过点,焦距为2. (1)求椭圆的方程; (2)椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点.设的斜率为,直线斜率为,求的值.
(本小题满分14分)如图,在三棱柱中,为棱的中点,,. 求证:(1)平面; (2)∥平面.
(本小题满分14分)设平面向量=,,,. (1)若,求的值; (2)若,求函数的最大值,并求出相应的值.
(本小题满分13分)设知函数(是自然对数的底数). (1)若函数在定义域上不单调,求的取值范围; (2)设函数的两个极值点为和,记过点,的直线的斜率为,是否存在,使得?若存在,求出的取值集合;若不存在,请说明理由.
(本小题满分13分)如图,椭圆的离心率为,、分别为其短轴的一个端点和左焦点,且. (1)求椭圆C的方程; (2)设椭圆C的左、右顶点为,,过定点的直线与椭圆C交于不同的两点,,直线,交于点,证明点在一条定直线上.