已知在处取得极值。 (Ⅰ)证明:; (Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。
已知单位向量夹角为锐角,且最小值为. (Ⅰ)求的值; (Ⅱ)若向量满足,求的最小值.
已知函数,其中. (Ⅰ)求最小正周期及对称轴方程; (Ⅱ)在锐角中,内角的对边分别为,已知,,求边上的高的最大值.
已知,. (Ⅰ)当时,求; (Ⅱ)若,求实数的取值范围.
已知函数. (Ⅰ)设,若在上单调递增,求实数的取值范围; (Ⅱ)求证:存在,使.
已知的三内角与所对的边满足。 (Ⅰ)求角的大小; (Ⅱ)如果用为长度的线段能围成以为斜边的直角三角形,试求实数的取值范围.