(本小题满分12分)在举办的环境保护知识有奖问答比赛中,甲、乙、丙同时回答一道有关环境保护知识的问题,已知甲回答对这道题目的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是.(1)求乙、丙两人各自回答对这道题目的概率.(2)求甲、乙、丙三人中至少有两人回答对这道题目的概率.
(本小题满分12分)已知椭圆,左焦点到直线x一y一2=0的距离为,左焦点到左顶点的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)直线l过点M(2,0)交椭圆于A,B两点,是否存在点N(t,0),使得,若存在,求出t的取值范围;若不存在,说明理由.
(本小题满分12分)如图,四棱锥S一ABCD中,已知AD∥BC,∠ASC=60°,∠BAD=135°,AD=DC=,SA=SC=SD=2.(Ⅰ)求证:AC⊥SD;(Ⅱ)求二面角A - SB -C的余弦值.
(本小题满分12分)甲、乙两名射击运动员参加某项有奖射击活动(射击次数相同).已知两名运动员射击的环数都稳定在7,8,9,10环,他们射击成绩的条形图如下:(Ⅰ)求乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率.(Ⅱ)甲、乙两名运动员现在要同时射击4次,如果甲、乙同时击中9环以上(包括9环)3次时,可获得总奖金两万元;如果甲、乙同时击中9环以上(包括9环)4次时,可获得总奖金五万元,其他结果不予奖励.求甲、乙两名运动员可获得总奖金数的期望值.(注:频率可近似看作概率)
(本小题满分12分)如图,为测得河对岸某建筑物AB的高,先在河岸上选一点C,使C在建筑物底端B的正东方向上,测得点A的仰角为α,再由点C沿东偏北β(β<)角方向走d米到达位置D,测得∠BDC=γ.(Ⅰ)若β=75°,求sⅠn∠BCD的值;(Ⅱ)求此建筑物的高度(用字母表示).
(本小题满分14分)已知函数. (1)若曲线在处的切线为,求的值;(2)设,,证明:当时,的图象始终在的图象的下方;(3)当时,设,(为自然对数的底数),表示导函数,求证:对于曲线上的不同两点,,,存在唯一的,使直线的斜率等于.