某班50名学生在一次数学考试中,成绩都属于区间[60,110],将成绩按如下方式分成五组:第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110],部分频率分布直方图如图7所示,及格(成绩不小于90分)的人数为20.(Ⅰ)请补全频率分布直方图;(Ⅱ)由此估计该班的平均分;(Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为,求的概率.
(本题10分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC平面BDE
(本小题满分10分)已知两直线和直线,试确定的值,使 (1)和相交于点; (2)且在y轴上的截距为.
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1, (1)求{an},{bn}的通项公式. (2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
在中,的对边分别为,已知 (Ⅰ)求的值; (Ⅱ)若,求的面积.
(本题10分)已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥平面ABCD. (1)求证:PF⊥FD; (2)设点G在PA上,且EG//平面PFD,试确定点G的位置.