(本小题12分)已知函数(1)求的值; (2)求函数的最大值,并求取最大值时取值的集合;(3)求函数的单调增区间。
在中,已知.(1)求证:tanB=3tanA (2)若求A的值.
中,分别为内角的对边且,(1)求的大小;(2)若,试判断的形状.
已知函数,,和直线m:y=kx+9,又.(1)求的值;(2)是否存在k的值,使直线m既是曲线的切线,又是的切线;如果存在,求出k的值;如果不存在,说明理由.(3)如果对于所有的,都有成立,求k的取值范围.
数列{ a n}满足a 1+2 a 2+22 a 3+…+2n-1 a n=,(n∈N*)前n项和为Sn;数列{bn}是等差数列,且b1=2,其前n项和Tn满足Tn=n·bn+1(为常数,且<1).(1)求数列{ a n}的通项公式及的值;(2)设,求数列的前n项的和;(3)证明+++ +>Sn.
已知函数(其中e是自然对数的底数,k为正数)(1)若在处取得极值,且是的一个零点,求k的值;(2)若,求在区间上的最大值;(3)设函数g(x)=f(x)-kx在 区间上是减函数,求k的取值范围.