(本小题满分14分)若椭圆:的离心率等于,抛物线:的焦点在椭圆的顶点上。(Ⅰ)求抛物线的方程;(Ⅱ)求的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程;
设是的反函数, (Ⅰ)求. (Ⅱ)当时,恒有成立,求的取值范围. (Ⅲ)当时,试比较与的大小,并说明理由.
已知数列{}中,,,其中n=1,2,3…. (Ⅰ)求,;; (Ⅱ)令,设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由.
已知函数 (I)求函数的最小正周期; (II)若函数的图象按平移后得到函数的图象,求在上的最大值.
如图,在棱长为1的正方体ABCD—A1B1C1D1中,AC与BD交于点E,与交于点F.(I)求证:⊥; (II)求二面角的大小(结果用反三角函数值表示).
甲、乙、丙3人投篮,投进的概率分别是,,. 现3人各投篮1次, 求:(Ⅰ)3人都投进的概率 (Ⅱ)3人中恰有2人投进的概率