如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.(1)求证:AC⊥DE;(2)求四棱锥P-ABCD的体积.
选修4-1:几何证明选讲如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB、FC. (Ⅰ)求证:FB=FC; (Ⅱ)求证:FB2=FA·FD;
(本小题满分12分)已知函数, (Ⅰ)试用含的式子表示b,并求函数的单调区间; (Ⅱ)已知为函数图象上不同两点,为的中点,记AB两点连线斜率为K,证明:
已知椭圆的离心率,短轴长为. (Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率为的直线与椭圆交于不同的两点、.是否存在常数,使得向量共线?如果存在,求的值;如果不存在,请说明理由.
(本小题满分12分)已知等差数列为递增数列,且是方程的两根,数列的前项和; (1)求数列和的通项公式; (2)若,为数列的前n项和,证明:
已知二次函数为偶函数,函数的图象与直线相切. (1)求的解析式; (2)若函数上是单调减函数,那么: ①求的取值范围; ②是否存在区间,使得在区间上的值域恰好为?若存在,请求出区间[m,n];若不存在,请说明理由.