某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
如图, ΔABC 是等腰直角三角形, ∠ ACB = 90 ° , D 是射线 CB 上一点(点 D 不与点 B 重合),以 AD 为斜边作等腰直角三角形 ADE (点 E 和点 C 在 AB 的同侧),连接 CE .
(1)如图①,当点 D 与点 C 重合时,直接写出 CE 与 AB 的位置关系;
(2)如图②,当点 D 与点 C 不重合时,(1)的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;
(3)当 ∠ EAC = 15 ° 时,请直接写出 CE AB 的值.
如图,点 M 是矩形 ABCD 的边 AD 延长线上一点,以 AM 为直径的 ⊙ O 交矩形对角
线 AC 于点 F ,在线段 CD 上取一点 E ,连接 EF ,使 EC = EF .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 cos ∠ CAD = 3 5 , AF = 6 , MD = 2 ,求 FC 的长.
某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于 90 % ,市场调研发现,在一段时间内,每天销售数量 y (个 ) 与销售单价 x (元 ) 符合一次函数关系,如图所示:
(1)根据图象,直接写出 y 与 x 的函数关系式.
(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元?
(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?
如图,一次函数 y = k 1 x + b 的图象与 x 轴、 y 轴分别交于 A , B 两点,与反比例函数 y = k 2 x 的图象分别交于 C , D 两点,点 C ( 2 , 4 ) ,点 B 是线段 AC 的中点.
(1)求一次函数 y = k 1 x + b 与反比例函数 y = k 2 x 的解析式;
(2)求 ΔCOD 的面积;
(3)直接写出当 x 取什么值时, k 1 x + b < k 2 x .
在平面直角坐标系中, ΔABC 的三个顶点坐标分别是 A ( − 1 , 1 ) , B ( − 4 , 1 ) , C ( − 3 , 3 )
(1)将 ΔABC 向下平移5个单位长度后得到△ A 1 B 1 C 1 ,请画出△ A 1 B 1 C 1 ;并判断以 O , A 1 , B 为顶点的三角形的形状(直接写出结果);
(2)将 ΔABC 绕原点 O 顺时针旋转 90 ° 后得到△ A 2 B 2 C 2 ,请画出△ A 2 B 2 C 2 ,并求出点 C 旋转到 C 2 所经过的路径长.