某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动)。该校合唱团共有100名学生,他们参加活动的次数统计如图所示。⑴求合唱团学生参加活动的人均次数;⑵从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;⑶从合唱团中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望。
已知椭圆的两焦点为,,离心率.(1)求此椭圆的方程;(2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
已知函数在与处都取得极值。 (1)求函数的解析式; (2)求函数在区间[-2,2]的最大值与最小值
已知点M与两个定点O(0,0),A(3,0)的距离的比为求点M的轨迹方程。
图中是抛物线型拱桥,当水面在时,拱顶离水面2米,水面宽4米,(1)建立如下图所示的直角坐标系,求抛物线的解析式。(2)水面下降1米后,水面宽是多少?
12分)已知函数y=xlnx (1)求这个函数的导数;(2)求这个函数的图象在x=1点处的切线方程