(本小题满分12分)在中,角所对的边分别为且满足(I)求角的大小;(Ⅱ)求的最大值,并求取得最大值时角的大小.
已知函数,其定义域为(),设。 (Ⅰ)试确定的取值范围,使得函数在上为单调函数; (Ⅱ)试判断的大小并说明理由; (Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数。
设为正实数,,,。 (Ⅰ)如果,则是否存在以为三边长的三角形?请说明理由; (Ⅱ)对任意的正实数,试探索当存在以为三边长的三角形时的取值范围。
已知为坐标原点,,。 (Ⅰ)求的单调递增区间; (Ⅱ)若的定义域为,值域为,求的值。
某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:
(Ⅰ)从这50名教师中随机选出2名,求2人所使用版本相同的概率; (Ⅱ)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为,求随机变量的分布列和数学期望。
已知函数(其中) (1)若,求函数的单调区间及极小值; (2)若直线对任意的都不是曲线的切线,求的最小值及实数的取值范围.