(本小题满分14分)如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,与的交点为,为侧棱上一点.(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;(Ⅱ)求证:平面BDE⊥平面SAC
设函数,证明: (Ⅰ)对每个,存在唯一的,满足; (Ⅱ)对任意,由(Ⅰ)中构成的数列满足.
如图,已知两条抛物线和,过原点的两条直线和,与分别交于两点,与分别交于两点. (1)证明: (2)过原点作直线(异于,)与分别交于两点.记与的面积分别为与,求的值.
如图所示,在多面体,四边形,均为正方形,为的中点,过的平面交于F. (Ⅰ)证明:; (Ⅱ)求二面角余弦值.
甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (1)求甲在4局以内(含4局)赢得比赛的概率; (2)记为比赛决出胜负时的总局数,求的分布列和均值(数学期望).
在中,,点D在边上,,求的长.