(本小题满分13分)设函数.(Ⅰ)求的最小正周期;(Ⅱ)当时,求函数的最大值和最小值.
已知复数根据下列条件,求m值.(1)z是实数;(2)z是虚线;(3)z是纯虚数;(4)z=0.
求证:关于x的方程x2+2ax+b="0" 有实数根,且两根均小于2的充分但不必要条件是a≥2且|b| ≤4.
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.(1)矩形的对角线相等且互相平分;(2)正偶数不是质数.
若F1、F2分别为双曲线 -=1下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足:,(1)求此双曲线的离心率;(2)若此双曲线过N(,2),求此双曲线的方程(3)若过N(,2)的双曲线的虚轴端点分别B1,B2(B2在x轴正半轴上),点A、B在双曲线上,且,求时,直线AB的方程.