(本小题满分13分)已知集合,.(1)当时,求;(2)若,求实数的值.
(本小题满分14分)已知函数在点处的切线为.(1)求实数,的值;(2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;(3)若,求证:.
(本小题满分14分)已知椭圆的离心率为,且经过点.圆.(1)求椭圆的方程;(2)若直线与椭圆C有且只有一个公共点,且与圆相交于两点,问是否成立?请说明理由.
(本小题满分14分)已知首项为,公比不等于的等比数列的前项和为,且,,成等差数列.(1)求数列的通项公式;(2)令,数列的前项和为,求证:.
(本小题满分14分)如图,在多面体中,平面,∥,平面平面,,,.(1)求证:∥;(2)求三棱锥的体积.
(本小题满分12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温(°C)与该奶茶店的这种饮料销量(杯),得到如下数据:
(1)若从这五组数据中随机抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(2)请根据所给五组数据,求出y关于x的线性回归方程.(参考公式:.)