在公差不为零的等差数列中,为方程的根,求的通项公式。
已知直线:与直线:互相平行,经过点的直线与,垂直,且被,截得的线段长为,试求直线的方程.
一个圆的圆心在直线上,与直线相切,在上截得弦长为6,求该圆的方程.
设数列、满足,且.(1)求数列的通项公式;(2)对一切,证明成立;(3)记数列、的前项和分别是、,证明:.
求由约束条件确定的平面区域的面积S和周长c.
设同时满足条件:① ;② (,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足: (为常数,且,). (Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.