(本小题满分12分)已知数列,满足:,当时,;对于任意的正整数,.设数列的前项和为.(Ⅰ)计算、,并求数列的通项公式;(Ⅱ)求满足的正整数的集合.
(本小题满分10分)设命题函数的定义域为;命题不等式对一切正实数均成立..(1)如果是真命题,求实数的取值范围;(2)如果命题“”为真命题,且“”为假命题,求实数的取值范围.
(本题10分) 设是偶函数,且当时,.(1)当时,求的解析式;(2)设函数在区间上的最大值为,试求的表达式.
(本题10分)设是正实数,且,记(1)求关于的函数关系式,并求其定义域;(2)若函数在区间内有意义,求实数的取值范围.
(本题11分)已知函数为奇函数.(1)求实数的值;(2)若关于的不等式只有一个整数解,求实数的取值范围.
(本题10分)已知.(1)若,求函数的值域;(2)求证:函数在区间上单调递增.