已知命题:任意,,命题:函数在上单调递减.(1)若命题为真命题,求实数的取值范围;(2)若和均为真命题,求实数的取值范围.
(本小题12分)设直线的方程 .(1)若在两坐标轴上截距相等,求的一般式方程.(2)若不经过第二象限,求实数的取值范围.
(本小题12分)已知两条直线,,当为何值时直线与分别有下列关系?(1) ⊥ ; (2)∥
(本小题10分)已知的三个顶点、、,求(1)边所在直线的一般式方程.(2)边上的高所在的直线的一般式方程.
已知函数在上为增函数,函数在上为减函数. (1)分别求出函数和的导函数;(2)求实数的值;(3)求证:当时,
一艘小船在航行中的燃料费和它的速度的立方成正比。已知在速度为每小时10公里时的燃料费是每小时6元,而其他与速度无关的费用是每小时96元。问:此船以多大的速度航行时,能使每公里的费用最少?