在长方体中,为线段中点.(1)求直线与直线所成的角的余弦值;(2)若,求二面角的大小;(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.
已知{}(是正整数)是首项是,公比是的等比数列。 (1)求和:①② (2)由(1)的结果归纳概括出关于正整数的一个结论; (3)设是等比数列的前项的和,求
设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点 ⑴.已知a=1,b=2,p=2,求点Q的坐标。 ⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。 ⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。
对定义在上,并且同时满足以下两个条件的函数称为函数。 ① 对任意的,总有; ② 当时,总有成立。 已知函数与是定义在上的函数。 (1)试问函数是否为函数?并说明理由; (2)若函数是函数,求实数组成的集合; (3)在(2)的条件下,讨论方程解的个数情况。
考察下列式子: …………………………………………………;请你做出一般性的猜想,并且证明你猜想的结论。
.如果对任意一个三角形,只要它的三边长a,b,c都在函数f(x)的定义域内,就有f(a),f(b),f(c)也是某个三角形的三边长,则称f(x)为“保三角形函数”. (1)判断下列函数是不是“保三角形函数”,并证明你的结论: ①f(x)= ; ②g(x)=sinx (x∈(0,π)). (2)若函数h(x)=lnx (x∈[M,+∞))是保三角形函数,求M的最小值.