在长方体中,为线段中点.(1)求直线与直线所成的角的余弦值;(2)若,求二面角的大小;(3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.
如图,,,,四点在同一圆上,的延长线与的延长线交于点,且.(1)证明:;(2)延长到,延长到,使得,证明:,,,四点共圆.
已知函数,.(1)若函数在点处的切线方程为,求的值;(2)若函数有三个不同的极值点,求的值;(3)若存在实数,使对任意的,不等式恒成立,求正整数的最大值.
已知抛物线上点到焦点的距离为4.(1)求抛物线方程;(2)点为准线上任意一点,为抛物线上过焦点的任意一条弦(如图),设直线,,的斜率为,,,问是否存在实数,使得恒成立.若存在,请求出的值;若不存在,请说明理由.
如图,四棱锥,平面⊥平面,△是边长为2的等边三角形,底面是矩形,且.(1)若点是的中点,求证:平面;(2)试问点在线段上什么位置时,二面角的大小为.
为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选三人,设表示体重超过60公斤的学生人数,求的分布列和数学期望.