(本小题共14分)如图所示多面体中,AD⊥平面PDC,ABCD为平行四边形,E,F分别为AD,BP的中点,AD=,AP=,PC=.(Ⅰ)求证:EF∥平面PDC;(Ⅱ)若∠CDP=90°,求证BE⊥DP;(Ⅲ)若∠CDP=120°,求该多面体的体积.
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,在半圆上),设,木梁的体积为V(单位:m3),表面积为S(单位:m2). (1)求V关于θ的函数表达式; (2)求的值,使体积V最大; (3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在三棱柱中,侧面为菱形,且,,是的中点. (1)求证:平面平面; (2)求证:∥平面.
设函数. (1)求的最小正周期和值域; (2)在锐角△中,角的对边分别为,若且,,求和.
已知函数,。 (1)求不等式的解集; (2)若不等式有解,求实数的取值范围。
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。 (1)化圆C的参数方程为极坐标方程; (2)若直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。