.设是公差不为零的等差数列,为其前项和,满足:且成等比数列.(I)求数列的通项公式;(II)设数列满足:,,为数列的前项和,问是否存在正整数,使得成立?若存在,求出;若不存在,请说明理由.
(12分)季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售. (1)试建立价格P与周次t之间的函数关系式. (2)若此服装每件进价与周次t之间的关系为, 试问该服装第几周每件销售利润L最大?(注:每件销售利润=售价-进价)
(12分)如图,四棱锥P-中,底面是正方形,是正方形的中心,底面,是的中点.求证:(1)∥平面;(2)平面平面.
已知在⊿ABC中,A(3,2)、B(-1,5),C点在直线上, 若⊿ABC的面积为10,求C点的坐标.
设圆台的高为3,其轴截面(过圆台轴的截面)如图 所示,母线A1A与底面圆的直径AB的夹角为,在轴截面中 A1B⊥A1A,求圆台的体积V.
12分)已知,且,求实数组成的集合C.