某班同学利用节假日进行社会实践,在25~ 55岁的人群中随机抽取n人进行了一次关于生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念,则称为“低碳族”.根据调查结果得到如下统计表和各年龄段人数频率分布直方图:(I)补全频率分布直方图并求n,a,p的值;(Ⅱ)从[40,50)岁年龄段的“低碳族”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁年龄段的人数为X,求X的分布列和数学期望.
(本小题满分14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.
(本小题满分14分)如图,在五面体ABCDEF中,四边形ABCD是平行四边形.(1)若CF⊥AE,AB⊥AE,求证:平面ABFE⊥平面CDEF;(2)求证:EF//平面ABCD.
(本小题满分14分)若定义在上的函数满足,,.(Ⅰ)求函数解析式;(Ⅱ)求函数单调区间;(Ⅲ)若、、满足,则称比更接近.当且时,试比较和哪个更接近,并说明理由.
(本小题满分13分)已知椭圆的下顶点为,到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求的最大值;(Ⅱ)若直线与圆O:相切,并与椭圆交于不同的两点A、B.当,且满足时,求AOB面积S的取值范围.
(本小题满分12分)如图,三棱柱中,平面,,, 点在线段上,且,.(Ⅰ)求证:直线与平面不平行;(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.