如图,在正四棱柱 A B C D - A 1 B 1 C 1 D 1 中, A A 1 = 2 , A B = 1 ,点 N 是 B C 的中点,点 M 在 C C 1 上,设二面角 A 1 - D N - M 的大小为 θ . (1)当 θ = 90 ° 时,求 A M 的长; (2)当 cos θ = 6 6 时,求 C M 的长.
(本小题满分12分) 已知定点,直线交轴于点,记过点且与直线相切的圆的圆心为点. (I)求动点的轨迹的方程; (Ⅱ)设倾斜角为的直线过点,交轨迹于两点 ,交直线于点.若,求的最小值.
(本小题满分12分) 设等差数列的前项和为,等比数列的前项和为,已知. (Ⅰ)求数列、的通项公式; (Ⅱ)求和:.
(本小题满分12分) 如图,在三棱锥中,面面,是正三角形,. (Ⅰ)求证:; (Ⅱ)若异面直线所成角的余弦值为,求二面角的大小;
(本小题满分12分) 质地均匀的正四面体玩具的4个面上分别刻着数字1,2,3,4。将4个这样的玩具同时抛掷于桌面上。 (Ⅰ)设为与桌面接触的4个面上数字中偶数的个数,求的分布列及期望E; (Ⅱ)求与桌面接触的4个面上的4个数的乘积能被4整除的概率。
(本小题满分10分) 在⊿中,角的对边分别为,且 (Ⅰ)求的值; (Ⅱ)若,且,求的值.