某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为 A 饮料,另外4杯为 B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯 A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令 X 表示此人选对 A 饮料的杯数.假设次人对 A 和 B 两种饮料没有鉴别能力. (1)求 X 的分布列; (2)求此员工月工资的期望.
求过直线l1:x-2y+3=0与l2:2x+3y-8=0的交点,且与直线l:3x+4y-2=0平行的直线.
直线l在两坐标轴上的截距相等,且P(4,3)到直线l的距离为,求直线l的方程.
试求三条直线ax+y+1=0,x+ay+1=0,x+y+a=0构成三角形的条件.
已知a为实数,求当直线l1:ax+y+1=0与l2:x+y-a=0相交时的交点坐标.
某商品的市场需求量y1(万件)、市场供应量y2(万件)与市场价格x(元/件)分别近似地满足下列关系:y1=-x+70,y2=2x-20.当y1=y2时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量. (1)求平衡价格和平衡需求量; (2)若要使平衡需求量增加4万件,政府对每件商品应给予多少元补贴?