某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为 A 饮料,另外4杯为 B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯 A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令 X 表示此人选对 A 饮料的杯数.假设次人对 A 和 B 两种饮料没有鉴别能力. (1)求 X 的分布列; (2)求此员工月工资的期望.
(本小题满分12分)如图,P是平面ADC外的一点,, ,,.(1)求证:是直线与平面所成的角(2)若,求二面角的余弦值.
(本小题满分12分)如图,直线分抛物线与x轴所围图形为面积相等的两部分,求k的值.
(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)甲题:⑴若关于的不等式的解集不是空集,求实数的取值范围;⑵已知实数,满足,求最小值.乙题:已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数)。⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;⑵若过定点的直线与曲线C相交于A、B两点,且,试求实数的值。
若实数(1)若>2,求函数的单调区间;(2)若在区间的取值范围.
已知函数,(1)若,求的值;(2)若对于恒成立,求实数的取值范围。