(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)甲题:⑴若关于的不等式的解集不是空集,求实数的取值范围;⑵已知实数,满足,求最小值.乙题:已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数)。⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;⑵若过定点的直线与曲线C相交于A、B两点,且,试求实数的值。
△ A B C 中, D 为边 B C 上的一点, B D = 33 , sin B = 5 13 , cos ∠ A D C = 3 5 ,求 A D .
有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据: 其中直径在区间[1.48,1.52]内的零件为一等品。 (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率。
(本小题满分12分) 在ABC中,。 (Ⅰ)证明B=C: (Ⅱ)若=-,求sin的值。
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程; (Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0). (i)若,求直线l的倾斜角; (ii)若点Q在线段AB的垂直平分线上,且.求的值.
已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围.