(请考生在下面甲、乙两题中任选一题做答,如果多做,则按所做的甲题计分)甲题:⑴若关于的不等式的解集不是空集,求实数的取值范围;⑵已知实数,满足,求最小值.乙题:已知曲线C的极坐标方程是=4cos。以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(是参数)。⑴将曲线C的极坐标方程化成直角坐标方程并把直线的参数方程转化为普通方程;⑵若过定点的直线与曲线C相交于A、B两点,且,试求实数的值。
已知函数在处取得极值-2.(1)求函数的解析式; (2)求曲线在点处的切线方程.
若求证: .
设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)证明:圆与轴必有公共点;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
已知为公差不为零的等差数列,首项,的部分项、、…、恰为等比数列,且,,.(1)求数列的通项公式(用表示);(2)若数列的前项和为,求.
已知函数.(1)当时,求函数单调区间;(2)若函数在区间[1,2]上的最小值为,求的值.