设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆.(1)求的值;(2)证明:圆与轴必有公共点;(3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
(本小题满分12分)如图,在三棱柱中,平面,,,.(1)过的截面交于点,若为等边三角形,求出点的位置;(2)在(1)条件下,求四棱锥与三棱柱的体积比.
(本小题满分12分) 为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下: 女生:
男生:
(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率; (2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
(,其中)
(本小题满分12分) 已知等差数列的前项和为, ,. (1)求数列的通项公式; (2)设,求数列的前项和为.
(本小题满分10分) 选修4—5:不等式选讲.已知函数.(1)若不等式恒成立,求的取值范围;(2)当时,求不等式的解集.
(本小题满分10分) 选修4—4:坐标系与参数方程.已知曲线的参数方程为(为参数),直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点为曲线上的动点,求点到直线距离的最大值.