如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=.(1)求过A.C. D三点的抛物线的解析式;(2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围;(3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值.
(本题10分)如图13-1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米. (1)用含的式子表示花圃的面积; (2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽; (3)若按上述要求施工,同时校长希望长方形花圃的形状与原长方形空地的形状相似,聪明的你想一想能不能满足校长的要求,若能,求出此时通道的宽;若不能,则说明理由。
(本题10分)如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2. (1)求证:AC是⊙O的切线; (2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)
(本题10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E. (1)求证:BE=CE; (2)若BD=2,BE=3,求AC的长.
(本题10分)某学习小组想了解扬州市“迎建城2500周年”健身活动的开展情况,准备采用以下调查方式中的一种进行调查:①从一个社区随机选取200名居民;②从一个城镇的不同住宅楼中随机选取200名居民;③从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象. (1)在上述调查方式中,你认为最合理的是 (填序号); (2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,请直接写出这200名居民健身时间的众数、中位数; (3)小明在求这200名居民每人健身时间的平均数时,他是这样分析的: 小明的分析正确吗?如果不正确,请求出正确的平均数; (4)若我市有800万人,估计我市每天锻炼2小时及以上的人数是多少?
(本题8分) 已知:关于x的方程4x2(k+2)x+k-3=0. (1)求证:不论k取何值时,方程总有两个不相等实数根; (2)试说明无论k取何值,方程都不存在有一根x=1的情况。