如图,已知抛物线 y = a x 2 + b x + 3 ( a ≠ 0 ) 与 x 轴交于 A ( 1 , 0 ) , B ( 4 , 0 ) 两点,与 y 轴交于点 C ,点 D 为抛物线的顶点.
(1)求抛物线的函数表达式及点 D 的坐标;
(2)若四边形 B C E F 为矩形, C E = 3 .点 M 以每秒 1 个单位的速度从点 C 沿 C E 向点 E 运动,同时点 N 以每秒 2 个单位的速度从点 E 沿 E F 向点 F 运动,一点到达终点,另一点随之停止.当以 M 、 E 、 N 为顶点的三角形与 △ B O C 相似时,求运动时间 t 的值;
(3)抛物线的对称轴与 x 轴交于点 P ,点 G 是点 P 关于点 D 的对称点,点 Q 是 x 轴下方抛物线上的动点.若过点 Q 的直线 l : y = kx + m ( | k | < 9 4 ) 与抛物线只有一个公共点,且分别与线段 G A 、 G B 相交于点 H 、 K ,求证: G H + G K 为定值.
(本题6分)A、B两地之间的路程是36km,小丽从A地骑自行车到B地,小明从B地骑自行车到A地,两人同时出发,相向而行,经过1h后两人相遇;再过0.5h,小丽余下的路程是小明余下路程的2倍.小明和小丽骑车的速度各是多少?
(本题4分)如图,已知AB∥CD,EF分别交AB、CD于点M、N,∠EMB=40°,MG平分∠BMF,MG交CD于G,求∠MGC的度数.
(本题4分) 对于任何实数,我们规定符号=,例如:== (1)按照这个规律请你计算的值; (2)按照这个规定请你计算,当时,的值.
(本题4分)如图,在边长为1个单位长度的小正方形组成的网格中. (1)把△ABC平移至A′的位置,使点A与A′对应,得到△A′B′C′; (2)线段AA′与BB′的关系是:; (3)求△ABC的面积.
解下列方程组(每小题3分,共6分) (1) (2)