如图,已知抛物线 y = a x 2 + b x + 3 ( a ≠ 0 ) 与 x 轴交于 A ( 1 , 0 ) , B ( 4 , 0 ) 两点,与 y 轴交于点 C ,点 D 为抛物线的顶点.
(1)求抛物线的函数表达式及点 D 的坐标;
(2)若四边形 B C E F 为矩形, C E = 3 .点 M 以每秒 1 个单位的速度从点 C 沿 C E 向点 E 运动,同时点 N 以每秒 2 个单位的速度从点 E 沿 E F 向点 F 运动,一点到达终点,另一点随之停止.当以 M 、 E 、 N 为顶点的三角形与 △ B O C 相似时,求运动时间 t 的值;
(3)抛物线的对称轴与 x 轴交于点 P ,点 G 是点 P 关于点 D 的对称点,点 Q 是 x 轴下方抛物线上的动点.若过点 Q 的直线 l : y = kx + m ( | k | < 9 4 ) 与抛物线只有一个公共点,且分别与线段 G A 、 G B 相交于点 H 、 K ,求证: G H + G K 为定值.
关于x的方程有两个不相等的实数根. (1)求k的取值范围。 (2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由
已知:如图,在梯形ABCD中,,AB=DC。点E,F,G分别在边AB,BC,CD上,AE=GF=GC。 (1)求证:四边形AEFG是平行四边形; (2)当时,求证:四边形AEFG是矩形。
某中学团委为研究该校学生课余活动情况,采取抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次研究中,一共调查了多少名学生? (2)“其它”在扇形图中所占的圆心角是多少度? (3)补全频数分布折线图。
一辆汽车装满货物的卡车,2.5m的高,1.6m的宽,要进厂门形状如图某工厂,问这辆卡车能否通过门?请说明理由。
定义运算“@”如下:当时,;当时,。(1)计算:(2)若,求x的值?