(本小题满分12分)已知为等比数列,为等差数列的前n项和,(1)求的通项公式;(2)设,求
已知函数.(Ⅰ)求函数的最小正周期及最小值;(Ⅱ)若,且,求的值.
设为实数,函数。(1)若,求的取值范围;(2)求的最小值;(3)设函数,直接写出(不需给出演算步骤)不等式的解集.
已知关于的二次函数.(1)设集合和,分别从集合P和Q中随机取一个数作为,求函数在区间上是增函数的概率;(2)设点是区域内的随机点,求函数在区间上是增函数的概率.
同时抛掷两枚大小形状都相同、质地均匀的骰子,求:(1)一共有多少种不同的结果;(2)点数之和4的概率;(3)至少有一个点数为5的概率.
假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
(1)画出散点图;(2)若线性相关,则求出回归方程;(3)估计使用年限为10年时,维修费用是多少?(参考公式:,)