已知数列{}的首项a1=5,前n项和为Sn,且Sn+1=2Sn+n+5(1)求证{1+}为等比数列,并求数列{}的通项公式;(2)是数列{}前n项和,求Tn.
(本题满分14分) 已知正项数列满足:对任意正整数,都有成等差数列,成等比数列,且 (Ⅰ)求证:数列是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ) 设如果对任意正整数,不等式恒成立,求实数的取值范围.
(本题满分14分)如图,已知为椭圆的右焦点,直线过点且与双曲线的两条渐进线分别交于点,与椭圆交于点. (I)若,双曲线的焦距为4。求椭圆方程。 (II)若(为坐标原点),,求椭圆的离心率
(本题满分14分)如图:多面体中,三角形是边长为4的正三角形,,平面,. (1)若是的中点,求证:; (2)求平面与平面所成的角的余弦值.
(本小题满分12分) 小白鼠被注射某种药物后,只会表现为以下三种症状中的一种:兴奋、无变化(药物没有发生作用)、迟钝.若出现三种症状的概率依次为现对三只小白鼠注射这种药物. (Ⅰ)求这三只小白鼠表现症状互不相同的概率; (Ⅱ)用表示三只小白鼠共表现症状的种数,求的分布列及数学期望.
本小题满分12分) 已知的三内角A,B,C所对三边分别为a,b,c,且 (I)求的值;(II)若的面积求a的值.