甲乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中三人答对的概率分别为,且各人回答得正确与否相互之间没有影响.(1)若用表示甲队的总得分,求随机变量分布列和数学期望;(2)用表示事件“甲、乙两队总得分之和为”,用表示事件“甲队总得分大于乙队总得分”,求.
已知函数和点,过点作曲线的两条切线、,切点分别为、. (1)求证:为关于的方程的两根; (2)设,求函数的表达式; (3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等,则m的最大值,为正整数
已知圆A:与轴负半轴交于B点,过B的弦BE与轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆。(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值。
已知,⑴求的值;⑵求的值.
已知函数,数列满足:. (Ⅰ)求证:; (Ⅱ)求数列的通项公式; (Ⅲ)求证不等式:
已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、三点. (1)求椭圆的方程: (2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标; (3)若直线与椭圆交于、两点,证明直线与直线的交点在直线上.