已知过点A(0,1),且方向向量为,相交于M、N两点.(1)求实数的取值范围; (2)求证:;(3)若O为坐标原点,且.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3. (1)求证:AC⊥DE; (2)求四棱锥P-ABCD的体积.
已知函数. (1)设,且,求的值; (2)在△ABC中,AB=1,,且△ABC的面积为,求sinA+sinB的值.
对有个元素的总体进行抽样,先将总体分成两个子总体和(是给定的正整数,且),再从每个子总体中各随机抽取个元素组成样本.用表示元素和同时出现在样本中的概率. (1)求的表达式(用表示); (2)求所有的和.
如图所示的几何体中,面为正方形,面为等腰梯形,,,,且平面平面. (1)求与平面所成角的正弦值; (2)线段上是否存在点,使平面平面? 证明你的结论.
在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的点为极点,轴正方向为极轴,且长度单位相同,建立极坐标系,得直线的极坐标方程为.求直线与曲线交点的极坐标.